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This paper presents a comparative analysis of the performance of vision—language models (VLMs) in detecting
explosive hazards in images acquired from unmanned aerial vehicles (UAVs). The study evaluates two state-of-
the-art models: ChatGPT (GPT-4.1) and Google Gemini-2.5-flash. A dataset of 2,500 frames containing anti-
personnel mines (specifically PFM-1, PMN-3, and RMA-2) was collected from videos recorded in Ukraine, the
USA, and Italy. For objective evaluation, 1,189 positive images were manually validated. At the frame level,
Gemini achieved a correct detection rate of 67.62%, while GPT-4.1 reached 63.75%. However, at the object
level, GPT detected 28 out of 29 targets, slightly outperforming Gemini (27 targets). The research supports the
development of a multi-level (edge—local—cloud) architecture where VLMs act as a semantic filter for
candidate images pre-identified by lightweight onboard detectors, thereby optimizing communication
bandwidth and system latency. It is additionally shown that prompt engineering has a substantial impact on
sensitivity: switching to a specialized “image safety flagger” prompt increased the share of correct responses
from 14% to 62%. Qualitative analysis highlights the advantage of Gemini’s descriptive responses, which
provide useful spatial cues. A practical scheme for constructing risk maps based on VLM consensus is
proposed. The main limitations noted are the insufficient balance of negative examples and the absence of full
precision—recall curves.
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Introduction. Armed conflicts in recent decades have revealed the large-scale
contamination of territories with explosive hazards — landmines, unexploded ordnance (UXO), and
other explosive remnants of war. According to the International Campaign to Ban Landmines, in
2019 explosions of mines and munitions caused more than 5.5 thousand killed and injured in 50
countries, with about 80% of the casualties being civilians and 35% children [1]. Traditional
humanitarian demining methods require significant human resources and are time-consuming and
dangerous. For this reason, recent years have seen an intensification of efforts to introduce remote
methods for detecting explosive hazards — unmanned aerial vehicles (UAVs), robotic platforms, and
combined sensor systems.

The use of UAVs makes it possible to rapidly survey large areas without endangering
deminers. Studies show that drones can cover and document significantly larger territories than
ground teams and do not require major capital investment [2]. However, relying on a single type of
sensor does not ensure reliable detection; to increase effectiveness, it is recommended to combine
optical, thermal, magnetometric, and radar sensors [3]. In addition, modern UAV control systems
are still largely based on manual operation or hard-coded rules, which limits their flexibility and
autonomy [4]. At the same time, integrating powerful AI models directly on board the UAV faces
fundamental edge-device constraints: low computational power (e.g. Raspberry Pi), limited energy
budget, and payload weight. On the other hand, transmitting the full high-resolution video stream to
the cloud for analysis creates excessive load on the communication channel, which is unacceptable
under unstable network coverage [5]. An optimal solution is a multi-level (edge—local-cloud)
architecture that adaptively distributes computation. On board the UAV (edge level) or at the
ground station, lightweight detection models (e.g. YOLOv8n) perform primary detection to identify
candidates (regions of interest, ROI), significantly reducing the amount of data that must be
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transmitted. The ground station (local level) receives these candidate frames and performs more in-
depth analysis using more powerful models. Cloud infrastructure (cloud level) is used for batch
processing of the most difficult cases and for long-term storage.

Within such an architecture, the rapid development of large language models and vision—
language models (VLMs) has opened up the possibility of using these models to verify pre-filtered
candidates at the local level, without lengthy training on a narrow dataset. VLMs such as GPT-4.1
Vision and Gemini 2.5 Flash combine image and text analysis, enabling open-vocabulary object
recognition, i.e. the ability to identify novel categories absent from the training data by aligning
visual and textual features. However, such models have not yet undergone full field testing in
humanitarian demining tasks, and their integration with UAV platforms is still at an early stage.

Problem statement. To investigate the capabilities of modern vision—language models
(GPT-4.1 Vision and Gemini 2.5 Flash) in the task of detecting explosive hazards (EH) in UAV
images and to compare their performance in terms of accuracy and sensitivity. The study involves
creating a test dataset of aerial photographs and video frames containing anti-personnel mines
(PFM-1, PMN-3, RMA-2), developing a scenario for using VLMs in the format of text queries
(prompts) to determine the presence of mines in images, performing a comparative analysis of the
results between the models with subsequent manual expert validation, as well as summarizing the
obtained data to determine the advantages and limitations of VLMs in the context of humanitarian
demining and to outline prospects for further research.

Analysis of recent studies and publications. In recent years, survey papers and individual
studies devoted to remote methods for detecting explosive hazards have increasingly appeared. In
the article by 1. Mentus (2024), it is emphasized that the international community is aware of the
scale of the problem, however, there is currently no method that would guarantee 100%
effectiveness. Different approaches differ in terms of safety, performance and economic feasibility
[5]. Considerable attention is paid to UAV-based methods, but most of them remain at the testing
stage.

The review by Kovacs & Ember (2022) emphasizes that there is no universal method with
acceptable reliability: each approach has a trade-off between safety, performance and economic
feasibility [1]. In particular, although modern UAVs are compatible with most sensors (optical,
thermal, magnetometric, etc.), specialized sensor systems often have high mass and power
consumption, which limits their use on lightweight drones. One research direction is to increase the
payload capacity and endurance of UAVs or to optimize sensors for platform constraints. Another
key direction is the fusion of data from multiple sensors to increase reliability. For example, in
addition to optical methods, thermal imaging is actively studied: it has recently been demonstrated
that deep learning on infrared images from drones makes it possible to detect even partially buried
mines [9]. Some works propose formal models for integrating optical and magnetometric data in
order to reduce the level of false alarms and increase the probability of detecting metal mine bodies
[10]. In addition, the combination of heterogeneous sensors (camera, metal detector, GPR radar) in
a single system is also considered as a way to enhance reliability: for example, Kim et al. (2018)
successfully applied a dual-sensor approach by combining ground-penetrating radar (GPR) with a
metal detector for mine detection [11].

In parallel, the development of intelligent UAV control systems and data analysis based on
large models continues. Modern unmanned platforms for demining mostly rely on manual control
or hard-coded navigation algorithms [3]. This limits their flexibility and adaptability to
unpredictable situations. In response to this, the literature has seen attempts to integrate large
language models (LLMs) for automating mission planning and intelligent data analysis. For
example, Chen et al. (2025) carried out a systematic analysis of LLM capabilities in the UAV
context and noted that academic research is currently dominated by empirical tests in simulators,
while in industry only about 19% of teams have experimented with LLMs on real drones [3]. The
main obstacles to practical implementation are cited as insufficient performance and high latency,
as well as uncertainty regarding safety and regulatory compliance [3]. Nevertheless, promising
concepts continue to emerge. In particular, a “next-generation” vision of drone control systems
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based on LLMs has been proposed, which provides for multi-scale operations and a high level of
UAV autonomy [8]. Despite these developments, the real application of LLMs/VLMs in
humanitarian demining is still limited to initial experiments and requires careful field testing.

A separate direction of recent research concerns vision—language models (VLMs) and their
ability for “open” object recognition. Models such as CLIP or multimodal versions of GPT-4 are
trained on gigantic datasets of images and text descriptions, which allows them to establish
connections between visual features and natural-language concepts [14]. The review by Zhang et al.
(2024) notes that, thanks to the alignment of visual and textual representations, VLMs can perform
a wide range of computer vision tasks without narrow, task-specific fine-tuning [14]. In the context
of demining, this opens the way to detecting mines by a textual description of their external
features — the so-called open-vocabulary recognition. Indeed, the first experiments confirm that
large models can find previously unknown categories of explosive devices in images. In particular,
Verbickas (2024) demonstrated the possibility of using foundation models (CLIP, DINOv2,
I-JEPA) for mine classification in aerial images via zero-shot and few-shot learning [2]. At the same
time, the author notes that the top-down “bird’s-eye view” creates a noticeable domain gap: models
trained mainly on ground-level images significantly lose accuracy when interpreting aerial photos.
Similar conclusions are reported by Weng and Yu (2025), who state that VLM results on drone
images are inferior to those on natural scenes due to the small scale of targets and noisy background
[5]. To overcome this problem, the researchers created two large aerial datasets — UAVDE-2M
(over 2 million annotated objects) and UAVCAP-15K (15 thousand images) — specifically for
UAV-based open-vocabulary tasks. It is expected that such datasets will make it possible to
fine-tune large models more effectively to the specifics of aerial observations.

Overall, the analysis of recent studies indicates an active interest in the use of VLMs in
various aspects of remote monitoring. Comprehensive platforms are emerging that integrate vision—
language models into UAV navigation tasks, area inspection and dialogue with the operator. For
example, Cai et al. (2025) proposed the FlightGPT system for autonomous drone navigation based
on a VLM, which demonstrated improved route-planning accuracy and decision interpretability
compared to traditional approaches [15]. Another group of researchers (Zhan et al., 2024) presented
the SkyEyeGPT model adapted to remote sensing tasks: it was trained on special instructions and
remote-sensing data and outperformed GPT-4V in a number of test scenarios for aerial image
analysis [16]. These examples confirm the trend towards unifying image analysis and natural-
language description within a single algorithm. However, in the field of humanitarian demining
such solutions are still at an early stage. Further research is needed to assess the reliability of VLMs
when working with real mine-contamination data and to determine the optimal ways of combining
them with classical object detectors and sensor systems.

Purpose and objectives of the study. The purpose of the study is to investigate the
capabilities of modern vision—language models GPT-4.1 Vision and Gemini 2.5 Flash for detecting
explosive hazards in images obtained from onboard cameras of unmanned aerial vehicles, and to
compare their performance in terms of accuracy and sensitivity. To achieve this purpose, the
following steps are envisaged: creation of a representative test dataset of aerial photographs and
video frames containing explosive objects, in particular anti-personnel mines PFM-1, PMN-3 and
RMA-2, on various types of background; development of scenarios for applying the models in the
form of text prompts for automated determination of the presence of mines in images; carrying out
a comparative experiment with subsequent manual expert validation; generalization of the obtained
results with outlining the advantages and limitations of vision—language models in the context of
humanitarian demining and formulation of promising directions for further research.

Main part. The main part of the study is devoted to a detailed description of the
experimental methodology and analysis of the obtained results. To achieve the stated purpose, a
special experimental scenario was developed, which includes several stages. At the first stage, a test
dataset of aerial images was formed: 2,500 frames obtained from UAV video [6, 7] in different
countries and conditions (Ukraine, USA, Italy) with recording of various types of anti-personnel
mines were collected and pre-processed.
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Figure 1 — General view of the complex

Next, two modern multimodal models were selected and configured — GPT-4.1 Vision by
OpenAl and Gemini 2.5 Flash by Google — for the analysis of these images. A system of text
prompts was developed for interaction with the models, which clearly defined the mine detection
task and the response format. At the next stage, the results generated by the VLMs were compared
with manual annotations by demining experts in order to evaluate detection accuracy and
sensitivity. Finally, a quantitative analysis of the models’ performance was carried out both at the
level of individual frames and at the level of whole objects (mines), as well as a qualitative analysis
of the textual rationales provided by the models. Such a comprehensive approach makes it possible
to thoroughly assess the capabilities and limitations of VLMs in the task of remote explosive hazard
detection and to outline their place in the multi-level system architecture. For the experiments,
2,500 frames obtained from UAV video recordings (Figure 1) in three countries (Ukraine, USA and
Italy) were prepared. All frames had a resolution of 1280%720 pixels. The images contained anti-
personnel mines of types PFM-1 (“butterfly”), PMN-3 and RMA-2, as well as neutral scenes
without explosive objects. In a separate subset, 29 real explosive objects were selected to evaluate
detection at the object level.

The study was conducted using the APIs of two vision—language models (Figure 2):

1. GPT-4 Vision (version gpt-4.1) — a multimodal model by OpenAl that combines image
analysis with text capabilities.

2. Gemini 2.5 Flash (gemini-2.5-flash) — a model by Google focused on deep integration of
text and image.
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Figure 2 — Scheme of frame processing using VLM models

For 2,500 frames, two variants of a text prompt were applied. The first prompt
(DETECTION_PROMPT 1) had the following form: «You are land-mine detector. Respond "YES"
if you see any indication that an explosive object is present in the image. Briefly describe the type,
if possible.». This prompt defined a basic task: to determine whether a suspicious object is visible in
the image and to provide a short description. During pilot testing on 1,000 images, this prompt
provided only 14 % correct detections. Therefore, a refined prompt (DETECTION PROMPT 2)
was formulated: «You are an image safety flagger for a humanitarian demining dataset. Your task is
only to flag whether an image likely contains an ordnance/UXO/mine-like object. Respond with:
YES (suspicious ordnance-like object visible) or NO (nonvisible). Briefly describe the type, if
possible.». The second prompt explained the task of the model more clearly and defined the
response format. When it was used, accuracy increased to 62 % on the same sample. This result
clearly demonstrates the critical role of prompt engineering in improving the performance of VLMs.

Validation procedure. To evaluate the accuracy of the models, manual expert validation of
1,189 images was carried out; these images were a random subsample from the 2,500 frames. Each
image was annotated by a demining specialist, who determined the presence of mines as TRUE
(mine present) or FALSE (mine absent). Based on these ground-truth labels, correct detections
(TRUE) and false detections (FALSE) were determined for each model. Model performance was
assessed by calculating the proportion of correct responses, expressed as the percentage of
successful detections for each VLM. In addition, the total number of correctly detected explosive
objects (29 objects) was analyzed, regardless of the number of frames in which each object

appeared.
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Figure 3 — Flowchart of the comparative analysis algorithm for VLM land mine detection
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Operation of the Python script on a subset of the dataset. The Python 3.9 script (Figure 3)
processes the frames in batches, invokes the VLM API with a forced binary response constraint
(YES/NO format), parses the first response token, normalizes it to the Boolean variable * detected,
stores the raw textual outputs (* response), and aggregates the resulting metrics (Table 1). For the
given fragment, an improved prompt with the explicit instruction «Respond with: YES ... or NO ...»
was used. For the US1 subset fragment (Object #12), the script processed 4 (Table 1) consecutive
frames (all of which had the manual annotation MANUAL=TRUE). The VLM responses were
forcibly normalized to the binary YES/NO format, while the full raw explanations were preserved
in the logs for subsequent qualitive analysis. Among the generated outputs, the Gemini textual
rationales proved to be the most informative: in each case, the model justified its decision by
referencing spatial landmarks, visual-material features, and the degree of object occlusion.
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Figure 4.a.b.c.d — Examples of images (from 00001.jpg to 00004.jpg) that sent to VLM

A representative example (Figure 4.a.b.c.d) of such wording is: «There is a small, light-
colored object visible in the grass, slightly to the left of the center in the upper half of the image...
partially obscured by grass... appears to be man-made... warrants suspicion...». Such an
explanation structure combines localization (offset from the center, upper half of the frame), a
description of external appearance (light color, irregular shape, “not similar to a natural element”),
and a cautious interpretation of purpose (“potentially... anti-personnel mine / component of an
IED”).

Table 1 — Output file in the form of a table with analysis results

image name | Obj# | MANUAL | gpt detected | gpt response |gemini_detected | gemini_response
YES. There is a
small, light-
colored object
NO (none visible in the
00001.jpg 12 TRUE False visible) TRUE grass, slightly to
) the left of the
center in the
upper half of the
image...
NO. The object
NO (none visible in the
00002.jpg 12 TRUE False . FALSE grass appears to
visible).
be a crumpled
piece of litter...
00003jpg | 12 | TRUE | False ggb(lr;;"“e FALSE ;S(g;:‘“ see
YES. YES. There is a
. There is a small, irregularly
00004.jpg 12 TRUE True small, round, TRUE shaped, light-
partially... colored ...

Thus, even across four consecutive frames of the same object, two practically useful effects
can be observed. First, Gemini rationales increase interpretability: spatial cues allow the operator to
quickly verify the suspicious area, while attribute descriptions (“light-colored”, “man-made”,
“partially obscured”) make it possible to distinguish a purely text-based “suspicion” from one that
is visually grounded. Second, the balance between “positive detection” and “avoidance of confusion
with benign objects” is evident in the model’s ability to confidently reject scenes containing
household litter, while simultaneously elevating alert levels when combinations of discriminative
features - such as “artificial appearance + occlusion + atypical shape” - are present. In practical
terms, these properties justify the use of Gemini as a “language-based detector with explanations™ at
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the stage of initial screening, while the more conservative GPT responses can serve as an additional
verification channel for reducing false alarms through consensus-based or sequential validation.

Frame-level statistics. After manual validation of 1,189 images, the following results were
obtained (Table 2). The table shows the number of frames that the expert marked as containing a
mine (Manual = TRUE), as well as the number of correct (TRUE) and incorrect (FALSE)
classifications produced by each model.

Table 2 — Results of image analysis

Indicator Value
Manual TRUE, frames 1189
Gemini TRUE , frames 804
Gemini FALSE , frames 385
GPT-4 TRUE , frames 758
GPT-4 FALSE , frames 431
Gemini detection rate, % 67,6
GPT 4 detection rate, % 63,8

Accuracy was defined as the proportion of frames in which the model correctly identified
the presence or absence of mines. The Gemini 2.5 Flash model showed a higher share of successful
detections (=67.6 %) compared with GPT 4 Vision (=63.8 %). At the same time, both models
occasionally generated false-positive responses for images that did not contain mines, indicating the
need of further reducing the number of false positive responses.

Object-level statistics. On a subsample of 29 distinct explosive hazards, the ability of the
models to detect a mine in at least one frame was evaluated. The correspondingresults are shown in
Table 3.

Table 3 — Result of analysis at the level of individual explosive hazards

Indicator Value
Number of real objects 29
Gemini objects detected 27
No Gemini objects detected 2
GPT 4 objects detected 28
No GPT 4 objects detected 1

At this level, GPT 4 Vision detected one more object than Gemini 2.5 Flash (28 versus 27).
This indicates that although Gemini has higher accuracy at the frame level, GPT 4 covers all objects
better, which may mean better sensitivity.

Analysis of prompt engineering. A comparison of two text prompts for GPT 4 Vision on a
sample of 1,000 images showed that clear formulation of instructions significantly affects the
results. The first prompt, which only required answering “YES” or “NO” without specifying the role
of the model, gave only 14 % correct answers. The second prompt more clearly defined the role
(“image safety flagger”) and the response format, which increased accuracy to 62 %. This confirms
that VLMs are sensitive to context and instructions, and that prompt engineering is a key tool for
improving effectiveness.

Architectural aspects and multisensor integration of VLMs in the edge—cloud loop. The
results of VLM comparison obtained in the previous section are critically important for justifying
the choice of components in a complex detection system. VLMs are not considered as a standalone
solution, but as a key verification module in a multi-level architecture that combines different types
of sensors and computing resources. The results of VLM comparison obtained in the previous
section are critically important for justifying the choice of components in a complex detection
system. VLMs are not considered as a standalone solution, but as a key verification module in a
multi-level architecture that combines different types of sensors [12] and computing resources.
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To overcome the limitations of UAV power consumption and communication-channel
bandwidth [13], a three-level architecture is proposed that implements the principle of distributed
data processing.

Level 1 (edge): An ‘edge’ computer (e.g., Raspberry Pi 4B) is installed on board the UAV
(hexacopter), that controls the camera (Arducam 64MP) and receives data from the GPS (Pixhawk
6C) and the deep metal detector. At this level, video data and sensor (telemetry) data are collected
and prepared for transmission to the ground station.

Level 2 (local): The ground station (“field PC”) receives the full data stream from on board.
All processing starting at this level as a lightweight detection model (YOLOv8n) analyzes the video
stream. Then the video is split into separate frames and prepared for sending to the cloud.

Level 3 (cloud): Cloud services (e.g., Hetzner with a MySQL database) are used for long-
term storage of all detections and audit, as well as for batch processing of cases using the most
powerful models (YOLOvV8x, GPT 4.1, Gemini 2.5 Flash) and for further model fine-tuning.

Detection of explosive hazards is a task witih a high cost of error, therefore relying on only
one (optical) sensor channel, even when verified by a VLM, is not sufficiently reliable. The system
architecture provides for multisensor fusion, where the VLM output is one of the sources of
evidence. The described system combines three data streams synchronized by timestamps: 1)
optical candidate frames (from YOLO); 2) GPS coordinates (from Pixhawk); 3) deep metal detector
signal (sm). The VLM output (e.g., sc — Gemini) is combined with the metal detector signal (sm) and
the onboard detector output (sy) to calculate the final risk probability Pfinal. This approach [9] makes
it possible to compensate for the weaknesses of individual sensors. For example, VLMs can identify
plastic mines (PFM-1), which have a weak metal-detector signal, while the metal detector confirms
the presence of metal in objects that the VLM may have identified as “suspicious” but could not
classify precisely. Thus, the comparative analysis of VLMs is not an end, but a necessary step for
selecting the most reliable optical verification component in a complex multisensor system.

Main results and their discussion. The obtained results make it possible to draw several
conclusions. Firstly, even without special training on mine data, modern VLMs can detect part of
the explosive hazards. However, the accuracy level (=64-68 %) is still insufficient for practical use
in humanitarian demining. Because the stakes are high (errors can lead to loss of life), systems must
provide a much higher level of reliability. Secondly, it is important to optimize text prompts.
Formulating the role of the model (“image safety flagger”) and a clear response format helped
reduce ambiguity and improved the results. Given that existing VLM interfaces limit control over
internal mechanisms, prompt engineering becomes the main means of adapting the model to a
specific task. Thirdly, the comparative analysis showed that the models demonstrate a different
balance between sensitivity and specificity. Gemini 2.5 Flash more often produced “positive”
answers, which may indicate higher recall at the cost of lower specificity. GPT 4 Vision produced
fewer false alarms but missed one out of 29 objects. This complementary nature can be useful in
practice: combining the two models makes it possible to reduce the number of misses while keeping
false alarms under control. Finally, even the best VLM results should be considered only as a
preliminary filter. Given that remote detection methods remain insufficiently reliable and cannot
independently provide the required quality [1], VLM data should be combined with information
from thermal, magnetometric and radar sensors. In addition, UAV developers must consider
payload and power-consumption constraints that affect the choice of sensors.

Conclusions. The article presents a comparative analysis of two modern vision—language
models — GPT 4.1 Vision and Gemini 2.5 Flash — for the task of detecting explosive hazards in
aerial images. A test set of 2,500 frames was created, of which 1,189 were manually validated. The
results showed that Gemini 2.5 Flash achieved higher accuracy at the frame level (~ 67.6 %)
compared with GPT 4.1 Vision (~63.8 %), but missed two out of 29 objects. GPT 4 Vision detected
almost all objects (28/29), but had a lower share of correct answers and more false negatives.
Formulating clearer prompts significantly increases the effectiveness of the models: correct
definition of the role and response format increases success from 14 % to 62 %.
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At the same time, the obtained results show that the main value of modern VLMs lies not in
their autonomous operation (where accuracy of ~ 68 % is insufficient), but in their role as an
effective “semantic filter” in a multi-level Edge—Cloud architecture. A parallel approach is used,
where lightweight detectors (YOLOvS8n) operate at the ‘local’ level of the ground station, and
“heavy” VLMs (GPT 4.1 Vision and Gemini 2.5 Flash) operate at the ‘cloud’ level. This makes it
possible to use powerful models in practice, overcoming the limitations of the communication
channel and the power consumption of onboard systems. Thus, VLMs can already be used as an
auxiliary verification component. Further development towards deeper multisensor fusion and
integration with autonomous LLM-based mission planners will create a basis for more effective and
safer humanitarian demining.

Prospects for further research. According to the results of the literature review,
integration of VLMs with unmanned platforms is at an early stage and requires overcoming several
obstacles. Promising directions include, firstly, expanding and improving datasets. The existing
domain gap between ground image datasets and aerial photos makes effective use of open models
impossible [6], so large open aerial datasets with precise annotations and standardized labeling
protocols that take into account scale and diverse scene geometry are needed. Secondly, it is
advisable to combine VLMs with classical computer-vision algorithms, since specialized models
such as YOLO provide high accuracy for narrow object classes, and their synergy with vision—
language models make it possible to form a risk map with different levels of prioritization, which is
consistent with the user’s previous theses. Thirdly, it is important to ensure integration of
multimodal data. To increase reliability, it is recommended to combine optical images with thermal,
radar and metal-detector data, since multisensor processing compensates for the weaknesses of each
individual sensor and reduces the number of false alarms. Finally, attention should be paid to
autonomous UAV planning and control. Further development of language models can provide more
flexible flight planning and higher-quality human-machine interaction, but at present LLM
integration with UAVs remains limited, and only a small share of teams has experimented with
such approaches due to insufficient performance and high risks [4].
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PoGorbko C., 3ienko O. EOEKTUBHICTh 3ACTOCYBAHHS BI3YAJIBHO-MOBHHX MOJIEJIEN
(VLM) IS PO3IIBHABAHHSI HA3EMHMX IIPEJIMETIB Y BATATOPIBHEBIM EDGE-CLOUD
APXITEKTVYPI BIIJTA

Ilpeomemom OocniddxcenHs € memoou a8mMoOMamuU308aH020 AHANIZY BI0eONOMOKY 3 Oe3NINOMHUX JiMANbHUX
anapamie (BIIJIA) ons 3adau eymanimaprozo posminyeanns. Poboma npucesuena axmyanvuii npobiemi
niosuwenHs HaditiHoCmi OUCMAHYIUHO20 GUs8NeHHs uOyxXoHebesneunux npeomemie (BHII) ¢ ymosax, koau
Mpaouyitini Memoou € NOBIIbHUMU, d NOGHA Nepedaid 6i0eonomoKy HA cepeep 00MedNCeHa NPONnYCKHOIO
30amuicmio Kauanie 36 ’s3Ky. Memoiw pobomu € nOpieHANbHUL AHANI3 eBEeKMUSBHOCMI CYYACHUX 6I3VAIbHO-
moenux mooenei (VLM) — GPT-4.1 Vision ma Gemini 2.5 Flash — ma eusnauennsi ix poni y 3anponoHoeamii
baeamopignesiti cucmemi 00pooku oanux. Memooonoeis 00cnioxiceHHs: 6a3yeMbCsi Ha NPOBEOEHHT HAMYPHO20
eKCnepuMeHmy 3 UKOPUCIAHHAM cneyianvHo cgopmosanoeo damacemy (2500 kadpis, ompumarux 3 BITJIA ¢
VYipaini, CILIIA ma Imanii), wo micmumo 306pasicenns min munie [IOM-1, IIMH-3 ma PMA-2 na piznomy
¢owni. 3acmocosano memoou iHxcenepii sanumis (prompt engineering) 0 aoanmayii yHieepcatbHux mooerell
0o cneyu@iunoi poni «incnekmopa Oe3neku» ma CmamucmMudHUull aHAIi3 pe3yabmamis i3 3a1y4eHHAM PYYHOL
excnepmuoi eanioayii 1189 306pasicenv. Haykosa HO8U3HA noiseac 8 00IpyHmMy8aHHI KOHYenyii 6UKOPUCTIAHHSL
VLM He ax agmoHomHUX OemeKkmopis, a aKk «cemanmuunoco ginompay (Verification Module) na xmaprnomy
pisni. Lle 0os3sonac peanizysamu posnisHA6aAHHA HOBUX mMunie 3azpos (open-vocabulary detection) 6e3
HeoOXiOHOCI MpuUBanoeo nepeHasyants Hetipomepesic. EkcnepumenmansHo 6cmanogneno, uwo modenv Gemini
2.5 Flash demoncmpye euwyy mounicme Ha pieHi okpemux kaopie (67,6 %), naoarouu 0emanvhi NOICHEHHsL 3
npocmopogumu opicumupamu, mooi ax GPT-4.1 Vision 3abe3neuye kpawyy 4ymaugicmv Ha pigHi 00 ’€kmis,
suseueuu 28 3 29 yinei. /Josedeno KpumuuHuil 6Naue (HOpMYIIOSaHHs MEeKCMo8020 3anumy: nepexio 6io
6a306020 npomnma 00 Cneyianizoeanoeo Ni0eUWUE MoyHicme posniznaganus 3 14 % 0o 62 %. Ilpakmuune
3HAUeHHs1 pOOOMU NOJISL2AE Y PO3POOYL cxeMu N0OYO06U MANU PUSUKIE HA OCHOBL KOHCEHCYCY MOOeiel, Oe 30HU
NOOBIUHO20 NIOMBEPOICEHH OMPUMYIOMb HAUGUWULL npiopumem nepesipku. 3anpononosana apximexmypa
Edge—Local-Cloud o0ozeonsic inmeepysamu nomyocni VLM 0e3 Kpumuuno2co HA8AHMAICEHHS HA KAHAU
36 A3Ky MA eHep2OCNONCUBAHHS OPOHA. Y BUCHOBKAX 3A3HAYEHO, W0 OAs OOCACHEHHs HeOOXIOHO20 pIGHS
besnexu VLM OoyinoHo 6uUKOpucmogysamu GUKIIOYHO V CKIAO0I MYJIbMUCEHCOPHUX cucmem (onmukd,
MemanooemeKxyis, MaeHIMmomMempis) K IHCMpyMeHm 000amKos8oi eepugikayii.

Knruoei cnosa: komn rtomepruil 3ip, 8i3yanvHo-mwosHi mooeni (VLM); 6esninomui nimanvui anapamu (BIIJIA);
2yMaHimapHe po3smiHy8anHa,; 6a2amopisHedull analiz 8i0e0300paxtCeHHs; MyIbIMUCEHCOPHE 3NUMMAL.
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